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Exits in multistable systems excited by coin-toss square-wave dichotomous noise:
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We consider a wide class of multistable systems perturbed by a dissipative term and coin-toss square-
wave dichotomous noise. These systems behave like their harmonically or quasiperiodically driven
counterparts: depending upon the system parameters, the steady-state motion is confined to one well for
all time or experiences exits from the wells. This similarity suggests the application to the stochastic sys-
tems of a Melnikov approach originally developed for the deterministic case. The noise induces a Melni-
kov process that may be used to obtain a simple condition guaranteeing the nonoccurrence of exits from
a well. For systems whose unperturbed counterparts have phase space dimension 2, if that condition is
not satisfied, weak lower bounds can be obtained for (a) the mean time of exit from a well and (b) the
probability that exits will not occur during a specified time interval.

PACS number(s): 05.40.+j, 05.45.+b, 05.20.Dd, 05.90. +m

I. INTRODUCTION

Numerous studies have been devoted, especially in the
past decade, to dynamical systems driven by dichotomous
noise, which is characterized primarily by whether it is
“on” or “off”’ or whether it is “up” or “down” [1,2]. One
example are systems where the excitation exceeds or does
not exceed a specified threshold, situations described as
on and off, respectively.

The purpose of this paper is to present a Melnikov-
based procedure, applicable to a wide class of nonlinear
multistable systems, which yields a necessary condition
for the occurrence of exits from a well. The systems we
consider are perturbed by a dissipative term and dichoto-
mous noise excitation and have unperturbed Hamiltonian
counterparts. In addition, for systems whose unper-
turbed counterparts have phase space dimension 2 we
show that, if the necessary condition for the occurrence
of exits is satisfied, our procedure can be used to obtain
weak lower bounds for (a) the mean exit time from a well
and (b) the probability that exits will not occur during a
specified time interval. Our approach yields information
on system behavior in a class of problems for which alter-
native approaches (e.g., the Fokker-Planck equation, oth-
erwise a much more powerful approach) are impractical
or inapplicable.

For specificity we consider the Duffing-Holmes equa-
tion perturbed by a linearly viscous dissipative term and a
stochastic excitation. We assume that the latter consists
of dichotomous noise of the coin-toss square-wave type
[2]. However, we show that our approach can accommo-
date other types of noise.

Section II describes the class of systems to which our
approach is applicable. Section III briefly reviews basic
chaotic dynamics results pertaining to the exit problem
for multistable systems with periodic or quasiperiodic ex-
citation and with stochastic excitation. Section IV de-
scribes the Melnikov process induced by dichotomous
noise and discusses the corresponding Melnikov-based
criterion guaranteeing the nonoccurrence of exits. Sec-
tion V discusses lower bounds for the mean exit time and
the probability of no exits during a specified time inter-
val, as well as the method we use to obtain mean up-
crossing time estimates for the Melnikov process. Sec-
tion VI presents our conclusions.

II. DYNAMICAL SYSTEMS

We consider second-order dynamical systems described
by the equation

F=—V'(z)+e[yG(t)—pz], (2.1a)

where € << 1 and V' (z) is a potential function. The unper-
turbed counterpart of Eq. (2.1b) is the Hamiltonian sys-
tem

Z=—V'(z). (2.1b)

We assume that Eq. (2.1b) has a hyperbolic fixed point [3]
connected to itself by a homoclinic orbit. However, all
the results of this paper also apply to systems with two
hyperbolic fixed points connected by a heteroclinic orbit.
As an example, we consider in this paper the Duffing-
Holmes equation, which has a double-well potential
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V(z)=z*/4—22%/2 , (2.2)

shown in Fig. 1(a).

Equation (2.1b), with the potential (2.2), has the homo-
clinic orbits shown in Fig. 1(b). The homoclinic orbits
constitute a separatrix, that is, a curve separating
motions in (2.1b) that evolve around the centers C or C’
and can never cross the potential barrier from motions
that evolve around the hyperbolic fixed point O and cross
the potential barrier periodically (Fig. 1). For the poten-
tial (2.2), integration of Eq. (2.1b) [which may be rewrit-
ten as Zdz =V'(z)dz] with initial conditions z =0, z=0
yields the expressions for the homoclinic orbits

zo(2)=1(2)"%sech(t) ,
2o(t)=F(2)!%sech(¢)tanh(z) .

(2.3a)
(2.3b)

For later use, we note that for the Duffing-Holmes equa-
tion the modulus of the Fourier transform of the function
h(t)=zy(—1t)is

S(w)=(2)"*rw sech(7w/2) (2.4)
and

e=[7 23(ndr=%. 2.5)

The approach presented in this paper is also applicable
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FIG. 1. (a) Potential wells for the bistable system and (b)
phase plane diagram for the unperturbed Hamiltonian system.
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to higher-order systems if their unperturbed counterparts
are completely integrable Hamiltonian systems or
parametrized families of completely integrable Hamil-
tonian systems, with a degenerate homoclinic or hetero-
clinic structure. The perturbations are subject to condi-
tions defined in [4].

III. NECESSARY CONDITION FOR THE OCCURRENCE
OF EXITS

In this section we review briefly basic chaotic dynamics
results pertaining to the exit problem for multistable sys-
tems with pericdic or quasiperiodic excitation and with
stochastic excitation. Those results were originally ob-
tained for periodically excited systems [5]. They were
subsequently extended to quasiperiodically excited sys-
tems in [6] and to stochastic systems in [7].

A. Periodic or quasiperiodic excitation

Let us consider the phase space z,z,0, where 0=owt, ®
is a constant, the coordinate axis O, denoted by T, is
normal to the plane z,Z, and O is a hyperbolic fixed point
of Eq. (2.1b) [Fig. 2(a)]. The stable manifold W*(TI") of
the hyperbolic orbit I is defined as the set of points
(z3(0),25(0),6} such that the orbits passing through
those points approach I' as t— «. The unstable mani-
fold W*(I') is defined as the set of points {z{(6),25(8),0}
such that the orbits passing through those points ap-
proach I' as t— — oo. The cross section of the stable and
unstable manifolds with any given plane 6=const is a
curve defined by the coordinates z,(2),Z,(¢) of the homo-
clinic orbit (2.3). For a planar system with a homoclinic
orbit it is clear that the stable and unstable manifolds
coincide.

The persistence theorem states that, for quasiperiodic
G (1) and sufficiently small €, the perturbed system has a
hyperbolic orbit I, with coordinates dependent on 6; T,

WS([T) n WY

FIG. 2. Stable and unstable manifolds for (a) the unperturbed
system and (b) the perturbed system (after [8]).
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is contained in a close neighborhood of I" and approaches
I" as e—0 [8]. The stable manifold W*(T',) is defined as
the set of points {z{(€,0),25(€,0),0} such that the orbits
passing through those points approach I', as t— . A
similar definition holds, in reverse time, for the unstable
manifold W*(T,).

The stable and unstable manifolds of the perturbed sys-
tem no longer coincide, as they do for e=0 [Fig. 2(b)].
The separation distance between W¥(I',) and W*(T,)
along a direction normal to the unperturbed manifolds,
known as the Melnikov distance, is a function of 6 and ¢.
For any given cross section of the stable and unstable
manifolds by a plane 6=const (such a cross section is
termed in [6] a phase space slice; in the particular case of
harmonic excitation it is known as a Poincaré section [5]),
the Melnikov distance is a function of ¢ only. To first or-
der, the Melnikov distance is proportional to the general-
ized Melnikov function (GMF) [9], which can be shown to
have the expression

M==B[" Z(ndr+y [© h(DG(r—0dr, (.1

where the filter in the convolution integral of Eq. (3.1) is
h(t)=zy(—1t) [5,6]. For sufficiently small €, if M (¢) has
simple zeros, W¥I',) and W*(I',) intersect transversely;
if M (t) is bounded away from zero, W*(I',) and W*(T",)
do not intersect [5,6,8]. From the Smale-Birkhoff
theorem it can be inferred that, for sufficiently small e,
the necessary condition for chaotic behavior (i.e., for the
largest Lyapounov exponent to be positive or, equivalent-
ly, for the system to be sensitive to initial conditions) is
that M (¢) have simple zeros [5,6,8].

Since motion starting on a manifold never leaves that
manifold, the existence of a transverse intersection point
in a phase space slice implies the existence of an infinity
of intersection points. Areas in a phase space slice that
are bounded by segments of stable and unstable manifolds
between two successive intersection points are termed
lobes. A set of lobe segments forming a shape roughly
similar to the shape of the homoclinic orbit of the unper-
turbed counterpart of the system is termed a pseu-
doseparatrix [10] (Fig. 3). Unlike the homoclinic orbit
(i.e., the separatrix) of Fig. 1(b), the pseudoseparatrix is
permeable, that is, it can allow motions occurring within
a well to exit from that well. The transport of phase
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FIG. 3. Time slice showing a homoclinic tangle.
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space across the pseudoseparatrix is effected by detrain-
ing and entraining lobes. [Detraining (entraining) lobes
are lobes that will cross or have crossed into the exterior
(interior) region bounded by the pseudoseparatrix [6]].
No such transport can occur in the absence of lobes. It
follows that the necessary condition for the occurrence of
exits in quasiperiodically excited multistable systems (1.1)
with sufficiently small perturbation is that the GMF have
simple zeros.

B. Stochastic excitation

The results just summarized are applicable for systems
with quasiperiodic excitation. They can be applied to
systems with stochastic excitation provided that the exci-
tation can be approximated as closely as desired by sums
of N harmonic terms with random parameters, where N
is a finite, albeit large number. For Gaussian excitation,
colored or white, such approximations are discussed in
[71.

In this paper we consider excitation by dichotomous
coin-toss square-wave noise, which has the expression

G(t)=a, [at+(n—1]tg<t=(a+tnlt,, (3.2)

where n=...,—2,—1,0,1,2,. .. is the set of integers, a
is a random variable uniformly distributed between O and
1, a, are independent random variables that take on the
values —1 and 1 with probabilities 1 and 1, respectively,
and t, is a parameter of the process G (¢). A rectangular
pulse wave of amplitude a, and length ¢, centered at the
coordinates ¢, =(a-+n —1)t; has a Fourier transform

F,(0)=a,|(2/0)sin(wty/2)exp( —jot, )|

[11]. The pulse itself can therefore be expressed as a sum
of harmonic terms approximating as closely as desired
the inverse Fourier transform of F,(w). Each realization
of the coin-toss dichotomous square wave can be approxi-
mated arbitrarily closely by a superposition of such sums,
which is itself a sum of harmonics, that is, a quasiperiodic
function with parameters a,,.

Each realization of the noise, determined as it is by a
set of parameters a,, induces a GMF characterized by
that set. The stochastic process G (¢) is an ensemble of
realizations of the noise and induces an ensemble of reali-
zations of the GMF. This ensemble is referred to as the
Melnikov process induced by G (¢). The Melnikov process
M (1) can be obtained by using Eq. (3.1) in which G () is
given by Eq. (3.2), since each quasiperiodic realization of
the approximating process can be assumed to be arbi-
trarily close to the corresponding realization of the pro-
cess G (1).

IV. MELNIKOV PROCESS AND CRITERION
GUARANTEEING THE NONOCCURRENCE OF EXITS

From Egs. (2.4), (2.5), and (3.1),

M(t)=—48/3+(2)"2yF(1) , (4.1)
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!
F(t)= Y a,{—sech[(n+a),—t]

n=-—1

+sech[(n +a—1)ty—t]} , 4.2)

where [ is sufficiently large for the error due to the as-
sumption that / is finite to be as small as desired. The
area under the curve h(¢)=zy(—1t) [Eq. (2.3b)] in a half
plane is (2)!/2. It follows immediately from the definition
of F(t) that —2 < F(t)<2 [the second integral on the
right-hand side of Eq. (3.1) yields F(#)=2 if a=0 and
a, =1 for all n such that >0 and a, = —1 for all n such
that ¢ <0]. Since the necessary condition for chaos (i.e.,
for exits) is that M () have simple zeros, it follows from
Eq. (4.1) that chaos cannot occur if F(¢) does not reach
the zero line (4[3/3)/[(2)1/27(] or

F(1)<0.94288/7 . 4.3)
Since |F(t)| <2, chaos cannot occur if
v/B<0.471 . (4.4)

The simplicity of Eq. (4.4) is noteworthy. Time his-
tories of the function F(¢) for t;=1.0, 0.35, and 0.1 are
shown in Fig. 4. It is seen that, as a criterion guarantee-
ing the nonoccurrence of exits, Eq. (4.4) is increasingly
weak as ¢, becomes smaller. We remark that Eq. (4.4) can
also be applied, with no modification, for coin-toss dicho-
tomous noise with random arrival times. More generally,
criteria similar to Eq. (4.4) can be derived for other
reasonable tail-limited random excitations.

We show in Figs. 5(a) and 5(b) time history realizations
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FIG. 4. Function F(¢) for t,=1.0, 0.35, and 0.1.
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FIG. 5. Time histories of z(#): (a) nonchaotic motion and (b)
chaotic motion.

corresponding to the dichotomous noise of Eq. (3.2),
to=1.0, parameters €=0.1, 8=1.5, and, respectively,
¥ /$=0.469<0.471 and y/B=1.887. The motion of
Fig. 5(a) is confined to one well. Its irregularity is due to
the stochastic nature of the excitation. The chaotic
motion of Fig. 5(b) is similar to chaotic motions induced
in the Duffing-Holmes oscillator by harmonic or quasi-
periodic excitation. Its irregularity is due to both the
chaotic nature of the motion and the stochastic nature of
the excitation. Figure 5(b) shows that, as is the case for
equations with harmonic forcing [12], the necessary con-
dition for the occurrence of chaos is helpful in the search
for chaotic regions of parameter space even for relatively
large €. Sensitivity to initial conditions (i.e., the positivity
of the largest Lyapounov exponent) was verified numeri-
cally for the motion of Fig. 5(b).

We have so far assumed that the noise G (7) is additive
[see Eq. (2.1)]. If in Eq. (2.1) we consider instead multi-
plicative noise »(z,2)G (t), then the filter h(7)=2y(—7)
in Eq. (3.1) is simply replaced by the filter

h, (T)=2o(—T)r[2o(—7),2o(—T)] . (4.5)

V. MEAN EXIT TIME AND PROBABILITY
OF NO EXITS DURING A SPECIFIED TIME INTERVAL

In this section we consider only systems whose unper-
turbed counterparts have phase space dimension 2.

A. Lower bound for the mean exit time

We refer to Fig. 4 and note that a line of constant ordi-
nate 0.9428B/y would represent the zero line for the
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Melnikov process. The areas between the zero line and
the positive ordinates of the GMF are the counterparts in
Fig. 4 of entraining lobes such as those shown in Fig. 3.
Similarity, the areas between the zero line and the nega-
tive ordinates of the GMF would represent the counter-
parts in Fig. 4 of detraining lobes.

For sufficiently high ratios /¥, the zero up crossings
of the process M (t) are rare events. We denote the mean
time between these up crossings by 7,. It is seen from
Fig. 3 that, on average, to within an approximation of or-
der one, no transport across the pseudoseparatrix can
occur during a time interval less than the mean zero up-
crossing time 7, of the Melnikov process, that is, 7, is
smaller than (a lower bound for) the mean exit time from
a well 7,. The type of Melnikov-based lower bound just
described is applicable regardless of the nature of the ex-
citation. In the case of excitation by white noise it has
been shown analytically that this lower bound is weak
[13]. Numerical simulations show that this is the case for
other types of noise as well.

B. Mean zero up-crossing rates
estimated by discrete probability function

We consider again Fig. 4, which shows typical realiza-
tions of the process F(t) [Eq. (4.2)] for values
t,=1.0,0.35,0.1. Figure 4 shows that large excursions
of F(t) are more likely for large values of t,. This is so
because for large t, the number of dominant terms in the
expression of F(¢) is small and the probability that suc-
cessive dominant terms will have the same sign is there-
fore relatively large. For relatively small ¢z, Monte Carlo
estimates of the probability of occurrence of large excur-
sions are poor owing to the rarity of such large excur-
sions. For this reason, to calculate the probability densi-
ty function of the stationary process F(¢) we use the
discrete probability function (DPF) approach [14].

We define the sum

—lI+i
Si= 2 akfk(t), (5.1)
k=—1I
i=0,...,2l, and fr(t)=—sech[(k +a)t,—t]

+sech[(k +1+a)t,—t]. For any value of ¢, S can take
on only two values £ f _; with probability 0.5 for each.
Similarly, S, can take on four values +f_;,£f ;. with
probability 0.25 each. This can be carried forward to cal-
culate the corresponding 2/ *! terms of §;, with the corre-
sponding probability of 0.5'*! each. However, we can
calculate the probabilities associated with .S; only for rel-
atively small values of i owing to limited computer
resources. This limitation can be circumvented by using
the DPF method to construct histograms for S;.

Let [S;,,Ps ,,» n =1,2,...,N] denote the histogram
associated with S;, where [S;,,S;,+;) denotes the nth
bin,

Sin+1

Pg,= [ Ps))ds; (5.2)

denotes the probability that the variant S; is contained in
the nth bin, and P(S;) denotes the probability density
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function (PDF) of S;. The DPF of S;, P[S;], is the set
P (S;) consisting of S; , and Pg; ,
P[Si]=[Si,nPSi,n ’ n=1727"-’N] ’ (5-3)

where the set P[S;] is determined recursively from

P[S;_,][13].

The bins are determined recursively as follows. Start
with S,,, n=1,...,N, by setting S,,=—|fl,
Sox=+If_/l, and  S,,=S,,+nA,  where
Ao=2|f_;|/N. Similarly, S;y=S,,+nA,, where

Su=—If 2 =1foim1ls Syy=+If-il+1f_1 1], and
A1=<S1’N_S1’1 )/N.

The bin probabilities are determined by means of the
recurrence formula

N
Ps11,=0.5 3 8(n)Pg , (5.4)
k=1

where 8(n)=11if S;, , <S;,+a;+1fi+1<S;4+1,,+1 and
0 otherwise. The simulation is started with
P[S,1=[So,nPso,ns #=1,...,N] with Pg,,=0.5 for
i =1,N and O for all other i. This approach dramatically
reduces storage and computational requirements.

The advantage of explicit DPF calculations over
Monte Carlo (MC) simulations is illustrated in Fig. 6.
The Monte Carlo simulations represented in Fig. 6 were
one order of magnitude more computationally intensive
than the DPF calculations; the probability density func-
tion (PDF) of F(t), shown in Fig. 6 by the dotted line,
was calculated from 10° realizations of F(¢). Neverthe-
less, an absolute value of F(t) exceeding unity was a
sufficiently rare occurrence that the extremes of the PDF
obtained by Monte Carlo simulations contained a high
degree of statistical noise. For this reason, for rare exits,
Monte Carlo simulations yield poor estimates or no esti-
mates at all. The DPF method does not suffer from this
limitation. In our calculations we used 100 bins ranging

10° F

107 |
1072 |
1073 |
107* [
1075 |
1078 |

-7

Probability Density Function

FIG. 6. Probability density function of F(z) for ¢,=0.1, es-
timated by the DPF approach (solid line) and by Monte Carlo
simulation (dotted line).
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from the lowest to the highest possible value of S;.

Similarly, we can use the DPF method to calculate ex-
plicitly the conditional PDF of dF (t)/dt given the value
of the function F. The conditional PDF’s based on
Monte Carlo simulations and the DPF method are shown
in Fig. 7 for t;=1.0 and three levels of F. The condition-
al PDF’s calculated by the DPF method are symmetric,
as expected. The estimates obtained by the Monte Carlo
method are affected by large statistical noise. Owing to
the rare occurrences at the higher levels, the conditional
PDF obtained by the Monte Carlo method is also
skewed. It is noted that this skewness is due to sampling
errors and could be reduced if the number of realizations
used in the Monte Carlo procedure were larger. The
PDF’s obtained by the DPF method allow the calculation
of the expected number of upcrossings by the function
F (1) of any desired levels [15].

Figure 8 shows the crossing rate as a function of up-
crossing level for t,=0.1, 0.35, and 1.0. For example, for
B/y =0.53 [as in Fig. 5(b)], the threshold for the function
F(t) is 0.9428X0.53=0.5 [Eq. (4.3)] and, from Fig. 6,
for t,=1.00 the mean up-crossing time is 7, ~3. From a
counterpart of Fig. 5(b), over a time interval
200 <t <1000 the estimated mean exit time was 7,~32,

y
T 1 T T

Conditional PDF

1 t +
Monte Carlo ------
DPF b

dx/dt

FIG. 7. Conditional probability density function of dF (t)/dt
given F(t)=0, F(¢)=0.8, and F(¢)=1.6, for t,=1.0.
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which, as expected, is longer than the mean zero up-
crossing time 7, =~ 3 of the Melnikov process.

C. Lower bound for the probability of no exit
during a specified time interval

If zero up-crossings of the Melnikov process are rare
events, the probability that no up-crossing occurs during
a specified time interval T can be written as

pr=exp(—T/7,) . (5.5)

Since 7, <T,, pr is an approximate lower bound for the
probability that exits from a well will not occur during
the time interval T. For example, for t,=0.1, y /B=1.6,
and T=10% p;=0.9999. Even though the probability
that no exit from a well can occur is higher, in such a
case the Melnikov-based lower bound may be useful in
some applications.
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FIG. 8. Crossing rate of function F(¢) for ¢t,=0.1, 0.35, and
1.0 as a function of the up-crossing level.
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VI. CONCLUSIONS

We showed that, for a wide class of nonlinear
differential equations, forcing by dichotomous noise in-
duces behavior that has useful similarities to behavior in-
duced by harmonic or quasiperiodic forcing. For certain
regions of parameter space, both the stochastic system
driven by noise and the deterministic system driven har-
monically experience behavior that may be chaotic or
nonchaotic. Nonchaotic behavior precludes the oc-
currence of exits from the potential wells. However, if
the behavior is chaotic, exits from the wells become pos-
sible. A necessary condition for the occurrence of chaos
in the deterministic and stochastic systems is the ex-
istence of simple zeros in, respectively, the Melnikov
function (which is a deterministic function) and the Mel-
nikov process. This parallelism suggested extending, to
our stochastic differential equations, an approach based
on the theory of chaotic dynamics and originally
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developed for deterministic systems. This approach ac-
commodates both additive and multiplicative noise and
yields a remarkably simple criterion guaranteeing the
nonoccurrence of exits. For second-order differential
equations we obtained weak lower bounds for (a) the
mean exit time from a well and (b) the probability of
nonoccurrence of exits during a specified time interval.
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